Beyond Energy: LCA of Organic Photovoltaic Solar Cells

Michael Tsang*, Guido Sonnemann, Dario Bassani

*PhD Candidate Université de Bordeaux | michael.tsang@u-bordeaux.fr
Outline

• Photovoltaics
• Organic Photovoltaics
• LCA: Methods
• LCA: Results
• Sensitivity Analysis
• Comparison to Conventional Cells
• Conclusions
Photovoltaics

- General PV Technology: conversion of light energy to electrical energy

- Semiconductor absorbs light, “knocking” loose electrons which create electricity (in a circuit)

Photo Credits: www.solarcell.net
Organic Photovoltaics

- Third generation solar technology, organic materials act as semiconductor

Photo Credits: www.phys.org
Organic Photovoltaics

Solar Cell-Efficiencies (Research Scale)

Embodied Energy of Organic and Other PV Cells

Photo Credits: NREL
Motivation for the Study

• Objective: prospective assessment of the environmental profile of organic photovoltaics using roll-to-roll technology

• Part of a larger LCA to understand the environmental and human health impacts from organic photovoltaics from cradle-to-grave
LCA: Goal and Scope

• Cradle-to-Gate

• Functional Unit: 1 watt-peak (Wp); power output under standard testing conditions

• Sensitivity Analysis

• Comparison to Conventional Cells
LCA: System Boundaries

- Inventory data from scientific literature, stoichiometric calculations, and Ecoinvent

- Ecoinvent 2.2 | ReCiPe v1.0.5 Midpoint (H) | openLCA 1.4
Sensitivity Analysis

DCBpcbm: Fullerene production using DCB as solvent in place of toluene
FTOinkjet: Deposition of FTO substrate using inkjet printing in place of sputtering
Comparison to Conventional Cells
Minimum Required Lifetime

• Compared impacts of organic models to amorphous silicon to estimate the minimum lifetime needed such that its impacts are no worse than amorphous silicon over a lifetime of 25 years.
Minimum Required Lifetime

<table>
<thead>
<tr>
<th>Impacts</th>
<th>Default Minimum lifetime (yrs)</th>
<th>DCB Minimum lifetime (yrs)</th>
<th>FTOinkjet Minimum lifetime (yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>terr.eco</td>
<td>10.3</td>
<td>9.8</td>
<td>9.4</td>
</tr>
<tr>
<td>fr.eco</td>
<td>7.5</td>
<td>6.9</td>
<td>6.6</td>
</tr>
<tr>
<td>met.dep</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
</tr>
<tr>
<td>ozone.dep</td>
<td>5.9</td>
<td>4.7</td>
<td>4.2</td>
</tr>
<tr>
<td>fossil.dep</td>
<td>4.7</td>
<td>3.7</td>
<td>3.6</td>
</tr>
<tr>
<td>ced</td>
<td>4.5</td>
<td>3.3</td>
<td>3.1</td>
</tr>
<tr>
<td>nat.land</td>
<td>4.4</td>
<td>3.6</td>
<td>3.4</td>
</tr>
<tr>
<td>average</td>
<td>4.2</td>
<td>3.4</td>
<td>3.1</td>
</tr>
<tr>
<td>ion.rad</td>
<td>4.0</td>
<td>2.1</td>
<td>1.5</td>
</tr>
<tr>
<td>wat.dep</td>
<td>3.9</td>
<td>2.1</td>
<td>1.5</td>
</tr>
<tr>
<td>fr.eutro</td>
<td>3.6</td>
<td>2.2</td>
<td>1.7</td>
</tr>
<tr>
<td>climate.chg</td>
<td>3.5</td>
<td>2.6</td>
<td>2.4</td>
</tr>
<tr>
<td>mar.eut</td>
<td>3.4</td>
<td>2.4</td>
<td>2.0</td>
</tr>
<tr>
<td>mar.eco</td>
<td>3.0</td>
<td>2.8</td>
<td>2.6</td>
</tr>
<tr>
<td>smog</td>
<td>3.0</td>
<td>2.3</td>
<td>2.1</td>
</tr>
<tr>
<td>agr.land</td>
<td>2.6</td>
<td>2.0</td>
<td>1.7</td>
</tr>
<tr>
<td>part.matter</td>
<td>2.6</td>
<td>2.0</td>
<td>1.7</td>
</tr>
<tr>
<td>hum.tox</td>
<td>2.3</td>
<td>2.3</td>
<td>1.9</td>
</tr>
<tr>
<td>terr.acid</td>
<td>2.1</td>
<td>1.5</td>
<td>1.3</td>
</tr>
<tr>
<td>urban.land</td>
<td>1.2</td>
<td>1.0</td>
<td>0.9</td>
</tr>
</tbody>
</table>
Energy Payback Time

- Default: 0.0
- FTOink: 0.2
- DCBpcbm: 0.4
- Multi-C Si: 1.8
- Amorphous Si: 400 days

24-35 days

Days: 0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650

Years: 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8
Carbon Payback Time

- Default
- FTOink
- DCBpcbm
- Multi-C Si
- Amorphous Si

7-11 days
Conclusions and Future Work

• The results suggest that organic photovoltaics have advantages over traditional (silicon) cells from a life cycle perspective.

• Room for continued improvement with materials selection and solar cell fabrication options.

• Average minimum required lifetime 3.1-4.2 years.

• Energy and carbon payback times are 1-2 orders of magnitude lower.
Conclusions and Future Work

• Potential exposure of nanomaterials during production (ongoing project).

• No large scale production embodying these production pathways exists. Important to take into account hot-spots in early stage development.

• Continue through the use and disposal phases to understand how environmental profile changes
Acknowledgements

• Dario Bassani and Guido Sonnemann

• Financial support of the Aquitaine Region for the Chair on LCA at the University of Bordeaux
Thank you for your attention!

Michael Tsang
Michael.tsang@u-bordeaux.fr | Tél: +33 06 66 17 63 70

CyVi, Life Cycle Group
Institute for Molecular Sciences - ISM
University of Bordeaux – UMR 5255 CNRS
351 Cours de la libération – Bât A12
33405 TALENCE cedex – France
www.ism.u-bordeaux.fr
References

