Carbon Saving Effects of Building Retrofits Considering Life Cycle

Seongwon Seo and Greg Foliente

Cities Program, CSIRO Land & Water
5-6 November, 2014, avniR Conference
Contents

- Motivation & Objective
- Method
- Case study
- Results
- Summary
We can’t satisfy carbon reduction target with new construction. We need to think about existing building stock.

► How to use embodied carbon for existing building stock

• Number stakeholders agreed to reduce energy & carbon emission for existing building stock. And they can consider different technologies for that but not knowledgeable.

► What kind of information provide via embodied study

• What amount each of the technology can reduce impacts considering life cycle (prioritise technologies),
• What about the payback for
 ➢ environmental (e.g., carbon, energy etc)
 ➢ financial ($) (=>$ can help Govt rebates or incentives)
Motivation & Objective

- Analyse the life cycle energy/carbon of retrofit options for commercial office building;

- Examine financial and carbon payback time of potential retrofit options considering its capital energy and carbon emissions;

- Provide valuable information to decision makers
Boundary of retrofit options

Cradle-to-Grave Retrofit Package

50 years life span

Material

Manufacture

Retrofit package

Installation

Construction

Operation

Maintenance

End-of-Life

Final Treatment

GHG from Operation

GHG from Final Treatment

GHG from Installation

GHG from Retrofit package

Transportation

System Boundary

Retrofit options
Methodology

Life cycle carbon (retrofit j) = $Carbon_{Initial} + Carbon_{install} + Carbon_{Operation} + Carbon_{Maint} + Carbon_{Disposal}$

$Carbon_{Initial} = \sum (\text{material} \times \text{carbon intensity})$

$Carbon_{Install} = \sum (\text{energy use} \times \text{carbon intensity})_j$ (retrofit package j)

$Carbon_{Operation} = \sum (\text{energy use} \times \text{carbon intensity})_k$ (k: building equip)

$Carbon_{Maint} = \sum (\text{Recurring carbon} + \text{Installation} + \text{Disposal})$

$Carbon_{Disposal} = \sum (\text{energy} \times \text{carbon intensity}) + \sum (\text{material} \times \text{transportation} \times \text{carbon intensity})$
Building type (Office)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of storey</td>
<td>3 storey</td>
</tr>
<tr>
<td>Dimension (m)</td>
<td>35 x 35</td>
</tr>
<tr>
<td>Floor to ceiling (m)</td>
<td>2.7</td>
</tr>
<tr>
<td>Total floor area (m²)</td>
<td>7240 (70% office area, 30% for others)</td>
</tr>
<tr>
<td>Wall</td>
<td>150mm LW concrete</td>
</tr>
<tr>
<td>Floor</td>
<td>150mm concrete</td>
</tr>
<tr>
<td>Glazing</td>
<td>Single colour tinted single glazing</td>
</tr>
<tr>
<td>Operation schedule</td>
<td>9:00am - 6:00 pm</td>
</tr>
<tr>
<td>HVAC system</td>
<td>VAV with reheat (DX split system air conditioning)</td>
</tr>
<tr>
<td>Temperature setting for cooling (°C)</td>
<td>24</td>
</tr>
<tr>
<td>Temperature setting for heating (°C)</td>
<td>21</td>
</tr>
<tr>
<td>Lifts</td>
<td>N/A</td>
</tr>
<tr>
<td>Occupancy* (m²/person)</td>
<td>15</td>
</tr>
<tr>
<td>Equipment load*(W/m²)</td>
<td>16</td>
</tr>
<tr>
<td>Lighting load*(W/m²)</td>
<td>13</td>
</tr>
</tbody>
</table>

* NABERS (National Australian Built Environment Rating System) Energy guideline for existing commercial building
HVAC system - Dominant contributor (eg., Brisbane and Darwin more than 45% of total carbon emissions. Perth and Sydney are also highly influenced by HVAC system with 40% and 38% respectively.
Energy & Carbon Intensities

Retrofit packages

<table>
<thead>
<tr>
<th>Package</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Replacing T5 lighting in office area (28W T5 fluorescent tube)</td>
</tr>
<tr>
<td>2</td>
<td>Chiller replacement (COP 4.2)</td>
</tr>
<tr>
<td>3</td>
<td>Replacing single glazing with high performance double glazing (6mm low-E)</td>
</tr>
</tbody>
</table>

\[
N \text{ (Number of lamp fitting)} = \frac{E \times A}{F \times \mu F \times LLF}
\]

- **E**: Lux level required on working plan (desk, normally 320 lx from AS [37])
- **A**: Area of room (L X W) Office area assumes 70% of total building floor area.
- **F**: total flux (lumens) from all the lamps in one fitting
- **μF**: Utilization factor from the table for the fitting to be used (0.5 for ceiling reflectance)
- **LLF**: Lighting Loss Factor, depreciation over time of lamp output and dirt accumulation on the fitting (typical LLF for air conditioned office = 0.8 [38])

\[
\frac{320 \text{ lx} \times 1690.9 \text{ m}^2 / \text{floor}}{3320 \text{ lm} \times 0.5 \times 0.8} = 407 \text{ of lamps per floor, thus, total lamps are 1,222 (=407 ×3 floor) of lamps.}
\]
Life cycle carbon of options

Initial embodied carbon
Embodied carbon/lamp X total lamp
T5 linear fluorescent lamp (35W):
24.78 kg CO$_2$eq/lamp (8,000 hrs) X 1122 lamps
30,294 kg CO$_2$eq/total

Installation
Assumed 8.25% of initial emb. Carbon (Buchanan & Honey, 1994)
2,499 kg CO$_2$eq/building

Maintenance
14 times replacement during the life span (50 years)
470,992 kg CO$_2$eq/building’s life span

Final treatment
Assumed no recycle (all go to landfill site)
848 kg CO$_2$eq (114g for avg T5 lamp, 20km distance of local landfill site)
Life cycle carbon of options

Initial embodied carbon

Air cooled screw chiller (300kW):
10,661 kg CO$_2$eq (Chen et al., 2011)

Installation

Assumed 8.25% of initial emb. Carbon (Buchanan & Honey, 1994)
879.5 kg CO$_2$eq/building

Maintenance

1 time replacement (25 years life span) during the life span (50 years)
11,559 kg CO$_2$eq/building’s life span

Final treatment

Assumed all recycled (mostly iron & copper)
18.3 kg CO$_2$eq (30km distance of local recycling centre)
Life cycle carbon of options

Initial embodied carbon
718,728 kg CO₂eq
971 m² of total window area (density 2.55 ton/m³)
691 kg CO₂eq/m² of aluminium frame
 (U=1.6W/m²K, 30% recycled)
49 kg CO₂eq/m² of double glazing (6mm)

Installation
Assumed 8.25% of initial emb. Carbon (Buchanan & Honey, 1994)
59,295 kg CO₂eq/building

Maintenance
Assumed no required maintenance during the life cycle of building

Final treatment
Assumed all recycled
220 kg CO₂eq (30km distance of local recycling centre)
Life cycle carbon emission of retrofit options

- Life cycle carbon (kg CO₂eq):
 - T5: 504,635 (65%)
 - Chiller: 23,218 (3%)
 - DG 6mm: 778,244 (100%)

- Emission factors:
 - 69.6 kg CO₂eq/m²
 - 3.2 kg CO₂eq/m²
 - 92%

- Operational benefit:
 - 107.4 kg CO₂eq/m²

- Percentage contributions:
 - 93%
GHG Reduction due to Retrofit

Adelaide

<table>
<thead>
<tr>
<th></th>
<th>Base</th>
<th>T5 lamp</th>
<th>Chiller replacement</th>
<th>Double glazing</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg CO₂/eq/mt (Adelaide)</td>
<td>138</td>
<td>120</td>
<td>6% (24%)</td>
<td>108</td>
</tr>
</tbody>
</table>

Perth

<table>
<thead>
<tr>
<th></th>
<th>Base</th>
<th>T5 lamp</th>
<th>Chiller replacement</th>
<th>Double glazing</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg CO₂/eq/mt (Perth)</td>
<td>200</td>
<td>180</td>
<td>7% (19%)</td>
<td>160</td>
</tr>
</tbody>
</table>

Melbourne

<table>
<thead>
<tr>
<th></th>
<th>Base</th>
<th>T5 lamp</th>
<th>Chiller replacement</th>
<th>Double glazing</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg CO₂/eq/mt (Melbourne)</td>
<td>150</td>
<td>138</td>
<td>12% (26%)</td>
<td>118</td>
</tr>
</tbody>
</table>

Brisbane

<table>
<thead>
<tr>
<th></th>
<th>Base</th>
<th>T5 lamp</th>
<th>Chiller replacement</th>
<th>Double glazing</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg CO₂/eq/mt (Brisbane)</td>
<td>250</td>
<td>230</td>
<td>9% (18%)</td>
<td>210</td>
</tr>
</tbody>
</table>

Sydney

<table>
<thead>
<tr>
<th></th>
<th>Base</th>
<th>T5 lamp</th>
<th>Chiller replacement</th>
<th>Double glazing</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg CO₂/eq/mt (Sydney)</td>
<td>100</td>
<td>88</td>
<td>7% (19%)</td>
<td>70</td>
</tr>
</tbody>
</table>

Darwin

<table>
<thead>
<tr>
<th></th>
<th>Base</th>
<th>T5 lamp</th>
<th>Chiller replacement</th>
<th>Double glazing</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg CO₂/eq/mt (Darwin)</td>
<td>180</td>
<td>160</td>
<td>6% (24%)</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>Unit</td>
<td>MEL</td>
<td>SYD</td>
<td>ADE</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>T5</td>
<td>LCCO$_2$eq</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Reduction</td>
<td>16</td>
<td>13</td>
<td>8.8</td>
</tr>
<tr>
<td>Chiller</td>
<td>LCCO$_2$eq</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>Reduction</td>
<td>9</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Double</td>
<td>LCCO$_2$eq</td>
<td>107.4</td>
<td>107.4</td>
<td>107.4</td>
</tr>
<tr>
<td>Glazing</td>
<td>Reduction</td>
<td>22</td>
<td>21</td>
<td>17</td>
</tr>
</tbody>
</table>
Carbon & Financial Payback Time

<table>
<thead>
<tr>
<th>Location</th>
<th>Carbon Payback Time</th>
<th>Financial Payback Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T5</td>
<td>Chiller</td>
</tr>
<tr>
<td>ADE</td>
<td>7.7</td>
<td>0.4</td>
</tr>
<tr>
<td>MEL</td>
<td>4.3</td>
<td>0.3</td>
</tr>
<tr>
<td>SYD</td>
<td>5.3</td>
<td>0.3</td>
</tr>
<tr>
<td>BRI</td>
<td>5.4</td>
<td>0.2</td>
</tr>
<tr>
<td>PER</td>
<td>5.9</td>
<td>0.2</td>
</tr>
<tr>
<td>DAR</td>
<td>6.4</td>
<td>0.2</td>
</tr>
</tbody>
</table>

T5: T5 replacement, Chiller: Chiller replacement, D-G: Double Glazing
Conclusion

This study presented a systematic life cycle evaluation for retrofit options and demonstrated life cycle impact of several retrofits based on Australian cities having different climate zones.

Chiller replacement has the *least* carbon emission while replacement *double glazing window* was identified having *largest* carbon emission during the life cycle of building (50 years).

Efficient *lighting (T5) replacement* has *small amount of initial embodied carbon* (6% of total) but it requires lot of carbon emissions in the *maintenance stage* having more than *93% of total carbon*.

Payback time can provide decision makers to distinguish short payback time for their retrofit selection. While carbon has relatively short payback, financial payback generally requires longer period.

Chiller replacements are more *effective* for the carbon reduction in the *tropical/subtropical area* due to shorter payback than other regions. But there exists trade off relationship between carbon emissions versus economic (investment).