WHICH ROLES FOR LCA IN AN ECO-DESIGN PROCESS?

Hélène Teulon
Benjamin Canaguier
How to practically use LCA in an ecodesign process?
A typical ecodesign process
Idea of product
How to practically use LCA in an ecodesign process?

- How to measure impacts of a product which does not exist yet?
- How to match the timing of the project with the delays inherent to the completion of a LCA study?
- How to share with design teams, non expert in LCA, a readable and useful information?

- Build on existing knowledge
- Make it quick
- Make it simple
BIP Browsing Impacts for Pertinence

1. Environmental regulations? YES?
 - Energy in use phase? YES?
 - Substances of concern? YES?
 - Consumables? YES?
 - Short life cycle? YES?
 - Improve production and end of life
 - Ban or reduce consumables
 - Improve end-of-life recovery
 - Ban substances of concern
 - Reduce energy consumption
 - Regulatory compliance

2. Increase the lifetime
 - Consider impacts from other products
 - Increase the service provided, the functionality
 - Improve the usage rate
 - Improve end-of-life recovery

3. Build on experience
 - Material intensity?
 - Transport intensity?
 - Production emissions?
 - Waste intensity?
LCA Screening

Make it quick!

Résultats comparés
Projet Bike - Bike final jours habitant équ.

abiotic depletion (elements, ultimate ultimate reserves) vs global warming (GWP100)

- Bike 1
 - abiotic depletion: 1.23×10^3 [8.61e-1 ~ 1.60e+0] jours habitant
 - global warming: 3.50e-1 [2.45e-1 ~ 4.55e-1]
- Bike final
 - abiotic depletion: 8.80×10^{-1} [6.16e-1 ~ 1.14e+0] jours habitant
 - global warming: 8.80e-1 [6.16e-1 ~ 1.14e+0]

AvNir 2013 - LCA in Ecodesign
MIMS

Multi-Impact Multi-Step Matrix

<table>
<thead>
<tr>
<th></th>
<th>Production</th>
<th>Distribution</th>
<th>Use</th>
<th>End of Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy consumption</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substances of concern</td>
<td>≈0</td>
<td>≈0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption of natural resources (non energetical)</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emissions to air</td>
<td>+</td>
<td>+</td>
<td>≈0</td>
<td></td>
</tr>
<tr>
<td>Emissions to water</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emissions to soils</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production of waste</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Other impacts (noise, EM waves...)</td>
<td>+</td>
<td>≈0</td>
<td>≈0</td>
<td>≈0</td>
</tr>
</tbody>
</table>

© 2012 Gingko 21 et Auki

![High impact]+++ ![Significant impact] + ![Low impact]≈0

Make it simple!