Mercerization or how a traditional process can reduce the environmental impacts of a shirt

S. Pesnel, V. Pasquet, A. Perwuelz - GEMTEX laboratory, ENSAIT, France
GEMTEX: university research laboratory in the field of textile materials and processes

D. Hazard, C. Dupuich - VERAMTEX S.A., Belgium
Summary

- Mercerizing
- Tests in laboratory
 - Dyeing
 - Use phase
 - Lifetime
- LCA
Mercerizing

Mercerizing?
- Optional treatment during the manufacture of cotton textiles
- Changes the macromolecular organization of cellulose

Mercerized fabrics:
- Is dyed more easily
- Dries faster
- Creases less
- Has a better quality

Actions on use phase and lifetime

2 effective levers to reduce environmental impacts of textile products

Life cycle of a shirt
Influence of mercerizing
2 processes of mercerizing → with NaOH or with NH₃

- **Traditional process with** soda (NaOH)
 - Pre-washing
 - Impregnation
 - Stabilization
 - Soda recovery
 - Neutralization washing

- **Alternative process with** liquid ammonia (NH₃)
 - NH₃ impregnation
 - NH₃ evaporation
 - Washing x 2

Assumption: NaOH is 70% recycled

Different influence:
- on the fabrics
- on the life cycle

- Industrial data
- Recycling of NH₃ (more than 99%)
Objective of the study

- **Comparative LCA** between 3 shirts:
 - a untreated shirt
 - a NH₃ mercerized shirt
 - a NaOH mercerized shirt

- **Tests in laboratory** on the 3 fabrics to evaluate differences on:
 - Dyeing step
 - Use phase
 - Lifetime

Life cycle of a shirt
Influence of mercerizing
Tests in laboratory
Dyeing

Principle:
- Application of the same dyeing processes on the 3 fabrics
- Study of the color obtained

Best color strength with NaOH mercerized fabric

Less dye is necessary for this fabric
- Only 3.5% of dye

- 8.5% of dye for the untreated fabric
- 7% of dye for the NH$_3$ mercerized fabric

Life cycle of a shirt
Tests in laboratory
Use phase (drying and ironing)

- Measurements are realized to quantify the differences between the 3 fabrics concerning the drying and the ironing.

Drying
- Measure of the residual moisture on the 3 fabrics after washing
- Slight decrease in the amount of moisture with mercerized fabrics (5%)
- Reduction of time in the tumble dryer

Ironing
- Time reduction of 40%
Tests in laboratory
Lifetime

Evaluation of the degradation of shirts during washing:

- Fabrics are washed and dried in tumble dryer **during 250 cycles**

Evolution of tear strength

- Mercerizing increases the lifetime by 50%

![Graph showing the evolution of tear strength](image)

Life cycle of a shirt:

1. **COTTON PRODUCTION**
 - Spinning
 - Weaving
2. **MANUFACTURING OF THE SHIRT**
 - Mercerizing
 - Dyeing
 - Sewing
3. **USE PHASE**
 - Washing (60°C)
 - Drying (tumble dryer)
 - Ironing
4. **END OF LIFE**

- Washing and drying
- Mercerizing
- Lifetime
LCA
Scope definition

- **Functional unit:**
 - “use and wash a shirt during one day”

- **Assumptions:**
 - the shirts weights 200g
 - shirts are washed after each use
 - drying in tumble dryer

- Calculation of the impacts:
 - ReCiPe method (midpoint)

- Software :
 - GaBi (PE International AG)

- Data sources :
 - GaBi software, ELCD and EcoInvent databases in general
 - **Experimentation**, publications and industrial data for more specific processes
Mercerized fabrics are less impacting → mainly due to lifetime (evaluate with tear strength)

Use phase is the most polluting step

Drying: 40-57% of the impact of the use phase → hypothesis: “systematic use of a tumble dryer”
LCA
Results for shirt production and use phase

- Production of mercerized shirts is more polluting due to the additional step

→ NaOH mercerizing is more impacting

- Use phase of mercerized shirts are less impacting

→ shirts dry faster and crease less (ironing time is shorter)
Conclusion

- Study of the degradation of the shirts during washing → to quantify the lifetime improvement with mercerised shirts.

- Mercerizing:
 - significant increase environmental impacts during the production phase
 - but net environmental benefits on the all life cycle of a shirt

- Future works:
 - Evaluation of the lifetime with additional parameter (in addition to the tear strength) → ex: tensile strength, abrasion resistance
 - Scenarios including real use of shirts, air drying and systematic ironing → evaluation of the new lifetime
 - Soda is recycling (70%) for NaOH mercerizing → in practice it is not systematic → sensitivity analysis
Thank you for your attention.

Projet ACVTEX
www.acvtex.eu

Sandrine Pesnel, GEMTEX / ENSAIT
sandrine.pesnel@ensait.fr