CONNECTING ECO-DESIGN & ENVIRONMENTAL LABELING
Introduction

1- Why must we take action?

2- Our Eco-design approach

3- Our involvement into French experimentation

Conclusion
1 – Why must we take action?
To implement our corporate values

Our values:
- Vitality
- Sincerity
- Generosity and **Responsibility**
2 – Our Eco-design approach

“Measure in order to know, know in order to act, and act in order to reduce”
Measuring environmental impacts

The **2 main principles** of our approach

Multi stages of life

Multi-criteria

- **Greenhouse gas (GHG)**
 - (Kg eq. CO2)

- **Water consumption**
 - (m3 of water)

- **Energy consumption**
 - (MJ of primary energy)
Obtain data about **raw materials** and **process** used.

Collecting **information** about finished product

(Bill of materials / Packaging / Distances & Types of transport / etc ...)

Measuring the impacts of **components**

<table>
<thead>
<tr>
<th>Mesh fabric 100% PES</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASS Kg</td>
</tr>
<tr>
<td>0,20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production: 4,72</td>
</tr>
<tr>
<td>Incline: 0,2</td>
</tr>
<tr>
<td>Landfill: 0,08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T-shirt 100% Polyester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results for 1 product</td>
</tr>
<tr>
<td>MASS Kg</td>
</tr>
<tr>
<td>0,110</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Results for annual volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASS Tons</td>
</tr>
<tr>
<td>12</td>
</tr>
</tbody>
</table>
Analyzing environmental impacts

Example: Polar fleece

Influence du lavage en utilisation (Polaire)

GHG emissions for each life cycle stage

<table>
<thead>
<tr>
<th>Mass [kg]</th>
<th>0.36</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHG [kg eq. CO2]</td>
<td>6.8</td>
</tr>
<tr>
<td>Energy [kWh]</td>
<td>34.1</td>
</tr>
<tr>
<td>Water [m3]</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Identifying the major impact stages

Favour affordable and profitable actions

Adapt actions to each product
Choosing more environmentally friendly **raw materials**

- Using recycled polyester

Reduce or eliminate high impact components

- Leather optimization
- Reducing weight (10%)
Next steps

✓ Improve our **methods** and our **environmental data** of materials and process: New indicators, energy mix, ... (For example: ADEME-AFNOR Working Groups)

✓ Put into place Environmental Management Systems in our **sub-contractors**

✓ Improve measures & reduce environmental impacts of:
 - product’s **use stage** by customers
 - product’s **end of life** (components separation / easier repairing / recycling)
% of products using Eco-design approach

- From 3% in 2009 to 9% in 2011
- Our 10 year vision: 100%

Reduce environmental impacts
3 – Our involvement in French experimentation
French experimentation

- From **July 2011** to **July 2012**
- Based on **multi criteria** approach (including CO2 eq.)
- **Free choice** of communication **medium** (Packaging, internet, etc.)
- **Feedback** to provide to French government

« Selected candidates will make available consumer information on the environmental impacts of their products »
Emission CO₂ : 22,1 Kg.
Display information

Forclaz 70 Symbium Access

8171494

- 22.1 kg
- 104.7 kWh
- 859 L
Maintenant, pour illustrer mes propos, voici l’exemple d’un tee-shirt 100% polyester.
Conclusion
Key Success Factors

✓ **Human**: everyone *trained* and involved
✓ **Act locally**: each situation has its own specific solution
✓ **Master** of process and products
✓ When beginning a project, don’t target perfection, but adopt a notion of *continuous improvement*
✓ The approach must firmly be supported by the **Top management** and integrated into the company’s vision