ECO-DESIGN FOR RECYCLING
Life-cycle inventories on the end-of-life of electr(on)ic products
Who we are: 2 leading WEEE take-back systems

Both accredited by the French public authorities since 2005

- > 2,100 producers members
- > 520,000 t collected and treated in 2016

Household EEE: all categories exc. Lighting.

Professional EEE: HVAC, commercial refrigeration, industry, vending, laundry, kitchen.

- 1,600 producers members
- > 20,000 t collected and treated in 2016

Household EEE: Lighting.

Professional EEE: Building, industry, research, health.
Our project:
LCI development on WEEE recycling
Context and objectives

- **Context:**
 - Lack of data (or outdated) concerning WEEE recycling in LCA databases
 - Increasing interest of manufacturers in the efficient use of resources
 - Need for reliable and representative data from field experience

- **Objectives:**
 - Develop a reference database, recognized at European level, modelling WEEE recycling
 - Enhancing reliability of LCA conducted by manufacturers (internal studies, environmental communication…)
 - Valuing the environmental benefits of eco-design efforts and efficient recycling
Partnership and calendar

- **Partnership Eco-systèmes – Récylum**
 - Co-funded by ADEME *(French EPA)*
 - Accompanied by Bleu Safran
 - Charlotte Hugrel and Magali Palluau, LCA experts specialized in waste management

- **Peer review “in real-time” by recognized and external experts**
 - Philippe Osset, LCA expert *(CEN/ISO expert), Solinnen*
 - Ueli Kasser, expert on WEEE treatment, Büro für Umweltchemie Zürich

Timeline:

- **Mid-2014**
 - Phase 1: preparation phase

- **Q1 2015**
 - Phase 2: modelling, peer-review, database creation

- **March 2017**
 - RELEASE of a first batch of data

- **January 2018**
 - RELEASE of a second batch of data
Equipment covered (2017-2018)

✓ Already available
 • Large Cooling Appliances
 • Large Household Appliances non-cold
 • Small Household Appliances
 • Flat Screens

✓ Already available
 • Lamps
 • Small Professional Appliances
 • Self Contained Emergency Lighting

⏰ Coming soon
 • Air Conditioning Roof Top
 • Small Heat Pumps
 • Commercial Cold Equipment
 • Water Fountain

⏰ Coming soon
 • Inverter
 • Lighting Systems
 • Large Professional Appliances
 • Motors
Modelling WEEE recycling
System boundaries

- From collection of WEEE (in France) to final treatment of each fraction
Methodology

Tracking each material along the recycling chain

- Logistic monitoring
- Input/output material flow analysis (Characterization and sampling programmes)
- Traceability of downstream operations

Evaluating the impacts of each process

- Questionnaires to operators
 - Energy consumption
 - Specific emissions
 - Conditioning

Bibliography / Literature

Adaptation of existing LCI
Granularity of the LCI:
- LCI at [material-WEEE category] scale
 Ex.: steel in large household appliances, glass in lamps, copper in flat screens…

2 LCI for each couple [material-WEEE Category]:
- 1 LCI « Stock method »
- 1 LCI « System expansion method »
Data quality evaluation
Quality assessment

Compliance with ISO 14044 and ILCD Entry-level

Peer review conclusions

<table>
<thead>
<tr>
<th>Comparison</th>
<th>SHA</th>
<th>LHA cold</th>
<th>LHA non-cold</th>
<th>Flat Screens</th>
<th>Tubes & Lamps</th>
<th>Self-contained emergency lighting</th>
<th>SPA Build & Med & Ind & Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technological representativeness</td>
<td>Very good</td>
<td>Very good</td>
<td>Good</td>
<td>Good</td>
<td>Very good</td>
<td>Good</td>
<td>Fair</td>
</tr>
<tr>
<td>Time representativeness</td>
<td>Very good</td>
<td>Very good</td>
<td>Very good</td>
<td>Fair</td>
<td>Very good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Geographical representativeness</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Completeness</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Precision</td>
<td>Very good</td>
</tr>
<tr>
<td>Methodological appropriateness and consistency</td>
<td>Very good</td>
</tr>
<tr>
<td>Overall quality</td>
<td>Very good</td>
<td>Very good</td>
<td>Very good</td>
<td>Good</td>
<td>Very good</td>
<td>Good</td>
<td>Good</td>
</tr>
</tbody>
</table>

Evaluation according to PEF method

Internal assessment based on the PEF Data Quality Ratio (DQR): Results ranging from **Fair** to **Very good** depending on WEEE flows and steps of the recycling chain.
Case studies and first key results
Case studies*

STEP 1: Integration of the datasets into a LCA software specialized in electr(on)ic devices (eime)
- Use of a test platform + adaptation of elementary flows nomenclatures

STEP 2: Modelisations by different producers
- Reworking of existing LCA studies to check data usability and compare previous and new end-of-life modelisations

STEP 3: In-depth analyses of the results
- Comparison of former and new results
- In-depth analyses of the significant differences
- Actions to facilitate data integration and use by designers

* If interested in taking part in such case studies, do not hesitate to contact us!
First key results and eco-design perspectives

- Impacts of **end-of-life** mostly **underestimated in previous studies**
 - New LCI Data more representative from field experience

- Importance of **metals** contribution to both impacts and benefits
 - *Balance between high impacts and potential benefits possible with the new LCI*

- High relative contribution of **printed circuit board (PCB)** to the total impacts
 - Importance of accessibility of PCB to optimize recycling

- Importance of developing a **high-quality recycling** to increase the benefits
 - Supports the re-integration of high-quality recycled materials (e.g.: closed loops projects)
Conclusion and perspectives
Outcomes & key messages

- **An unprecedented database in Europe**
 - **WEEE management:** complex processes, modelled with operational data
 - **LCI:** material-WEEE category scale, covering all operations from collection to final treatment
 - **A database** directly usable by producers with their Bill Of Material

- **2 platforms on the LCDN:**
 - http://weee-lci.recylum.com

- **Collaboration with LCA softwares editors to integrate these datasets**

- **Medium/long term:** extend geographical coverage

[Source] [avniR] Conference - November 8-9, 2017 | Lille
Any questions?

Pierre-Marie ASSIMON
Head of Studies and Development
pmassimon@eco-systemes.fr

Laurène CUENOT
Eco-design engineer
lcuenot@eco-systemes.fr

Thomas VAN NIEUWENHUYSE
Eco-design expert
tvannieuwenhuyse@eco-systemes.fr

Laure MORICE
Head of studies and risks prevention
lmorice@recylum.com

Romain LESAGE
Eco-design project engineer
rlesage@recylum.com