ENVIRONMENTAL ASSESSMENT OF INNOVATIVE PLANT-BASED PROTEIN-RICH FOOD PRODUCTS TOWARDS A MORE SUSTAINABLE FOOD CONSUMPTION

Mirjam Busch, Martina Krüger, Andreas Detzel, Clara L. Wriessnegger and Andrea Drescher
Institut für Energie- und Umweltforschung Heidelberg (Germany)
food accounts for 30% of the EU GHG emissions

animal products represent > 50% of the total EU water footprint

will create innovative, high quality, protein-rich food crops and products, to sustain human health, the environment, and biodiversity

30% of the human-induced biodiversity loss is related to livestock production

agriculture accounts for 94% of total EU NH3 emissions
PROTEIN2FOOD: project steps

WP 1: AGRICULTURE
- Chick Pea
- Lentil
- Faba Bean
- White Lupin
- Andean Lupin
- Buckwheat
- Quinoa
- Amaranth

WP 2: PROCESSING
- Dry Fractionation
- Wet Fractionation
- Flakes
- Defatted Flakes
- Defatted Flours
- Endosperm Flours
- Wholemeal Flours
- Isolates
- Concentrates
- Flours

WP 3: PRODUCT FORMULATION / PROTOTYPES
- Meat Substitutes
- Spread-like
- Meat-like
- Bakery Products
- Bread
- Biscuits
- Pasta
- Smoothy
- Milk-like
- Powders

WP 4: MARKET ANALYSIS

WP 5: Field Tests: IT -- DK -- NL -- RO

WP 6: Dissemination

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 635727.

www.protein2food.eu
PROTEIN2FOOD: project steps

WP 1: AGRICULTURE
- Chick Pea
- Lentil
- Faba Bean
- White Lupin
- Andean Lupin
- Buckwheat
- Quinoa
- Ama-ranth

WP 2: PROCESSING
- Dry Fractionation
- Wet Fractionation
- Flakes
- Defatted Flakes
- Defatted Flours
- Endosperm Flours
- Wholemeal Flours
- Isolates
- Concentrates
- Flours

WP 3: PRODUCT FORMULATION / PROTOTYPES
- Meat Substitutes
- Spread-like
- Meat-like
- Bakery Products
- Bread
- Biscuits
- Pasta
- Smoothy
- Milk-like
- Powders

WP 4: MARKET ANALYSIS

WP 5: SUSTAINABILITY ASSESSMENT

WP 6: Dissemination

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 635727.

www.protein2food.eu
PROTEIN2FOOD: project steps

WP 1: AGRICULTURE
- Chick Pea
- Lentil
- Faba Bean
- White Lupin
- Andean Lupin
- Buckwheat
- Quinoa
- Amaranth

WP 2: PROCESSING
- Dry Fractionation
- Wet Fractionation
- Flakes
- Defatted Flakes
- Defatted Flours
- Endosperm Flours
- Wholemeal Flours
- Isolates
- Concentrates
- Flours

WP 3: PRODUCT FORMULATION / PROTOTYPES
- Meat Substitutes
- Spread-like
- Meat-like
- Bakery Products
- Bread
- Biscuits
- Pasta
- Smoothy
- Milk-like
- Powders

WP 4: MARKET ANALYSIS

WP 5: SUSTAINABILITY ASSESSMENT
- Field Tests: IT -- DK -- NL -- RO

WP 6: Dissemination

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 635727.
PROTEIN2FOOD: project steps

WP 1: AGRICULTURE
- Chick Pea
- Lentil
- Faba Bean
- White Lupin
- Andean Lupin
- Buckwheat
- Quinoa
- Amaranth

WP 2: PROCESSING
- Dry Fractionation
- Wet Fractionation
- Flakes
- Defatted Flakes
- Defatted Flours
- Endosperm Flours
- Wholemeal Flours
- Isolates
- Concentrates
- Flours

WP 3: PRODUCT FORMULATION / PROTOTYPES
- Meat Substitutes
- Bakery Products
- Pasta
- Beverages
- Spread-like
- Meat-like
- Bread
- Biscuits
- Smoothy
- Milk-like
- Powders

WP 4: MARKET ANALYSIS

WP 5: SUSTAINABILITY ASSESSMENT

WP 6: Dissemination

Farm2Fork LCA models

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 635727.
PROTEIN2FOOD: project steps

WP 1: Agriculture
- Field Tests: IT -- DK -- NL -- RO
 - White Lupin
 - Quinoa

WP 2: Processing
- Dry Fractionation
- Wet Fractionation
 - Wholemeal Flours
 - Isolates

WP 3: Product Formulation / Prototypes
- Meat Substitutes
- Meat-like

WP 4: Market Analysis

WP 5: SUSTAINABILITY ASSESSMENT

WP 6: Dissemination

Farm2Fork LCA models
LCA of vegetable meat substitute

Nutrient flow from air (Nitrogen Fixation)

Ressources:
- white lupine
- quinoa

Handling of Multi-output processes
- Processing Crops
- Processing to Food Product
- Vegetable meat substitute

Emissions:
- to Air (e.g. CO₂, CH₄)
- to Water (e.g. NO₃⁻)

Functional unit

System boundary

N-Cycle of legumes

Nutrient flow from air (Nitrogen Fixation)

Ressources:
- e.g. Water
- e.g. Area

Emissions:
- to Air (e.g. CO₂, CH₄)
- to Water (e.g. NO₃⁻)

www.protein2food.eu
LCA of vegetable meat substitute

System boundary

Cultivation
- white lupine
- quinoa

Processing Crops
- lupine protein isolate
- quinoa flour
- water

Processing to Food Product

Vegetable meat substitute

N-Cycle of legumes

Nutrient flow from air (Nitrogen Fixation)

Ressources:
- e.g. Water
- e.g. Area

Emissions:
- to Air (e.g. CO₂, CH₄)
- to Water (e.g. NO₃⁻)

LCIA category results

- Climate change
- Ozone depletion
- Particulate matter
- Photochemical ozone formation
- Acidification
- Eutrophication, aquatic
- Eutrophication, terrestrial

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 635727.

www.protein2food.eu
How to implement N-related advantages of legumes?

- N₂-fixation from atmosphere
 178 kg N/ha (lit.: Sulas 2016)

- Indirect N₂O emission to air

- Nitrate (NO₃⁻) leaching to (ground) water

- Harvest

- Net Remaining N in soil pool
 33 kg N/ha (lit.: FIBL)

- Removal from field with lupin seeds

- Credit given: production of 33 kg N/ha Mineral N fertilizer
Handling of multi-output processes

Nutrient flow from air (Nitrogen Fixation)

Ressources: e.g. Water e.g. Area

Emissions: to Air (e.g. CO_2, CH_4) to Water (e.g. NO_3^-)

Handling of Multi-output processes

System boundary

Cultivation

white lupine
quinoa

Processing Crops

lupine protein isolate
quinoaflour
water

Processing to Food Product

Vegetable meat substitute

N-Cycle of legumes

LCIA category results

- Climate change
- Ozone depletion
- Particulate matter
- Photochemical ozone formation
- Acidification
- Eutrophication, aquatic
- Eutrophication, terrestrial

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 635727.

www.protein2food.eu
Example quinoa wet processing

drying electricity
water (washing)
water (extraction)

Quinoa seed → Quinoa wet processing → Saponin

Quinoa wet processing → Fibre/protein 1

Quinoa wet processing → Isolate 2

Quinoa wet processing → Isolate 3

Quinoa wet processing → Starch fraction

Fibre/protein 1 → Classified as “desired product”

Isolate 2 → Classified as “product 2”

Isolate 3 → Classified as “product 3”

Starch fraction → Classified as “by-product”

Value = 0 – 100 % of the desired product
Handling of by-products is important when looking for innovative alternatives.

<table>
<thead>
<tr>
<th>Usage of all ingredients</th>
<th>100%</th>
<th>75%</th>
<th>50%</th>
<th>25%</th>
<th>0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing</td>
<td>3,5</td>
<td>1,5</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>+ Neutralization and Drying</td>
<td>2,5</td>
<td>1,5</td>
<td>1</td>
<td>0,5</td>
<td>0</td>
</tr>
<tr>
<td>+ solvent-based Oil Extraction</td>
<td>0,5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Crop Processing</td>
<td>0,5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cultivation</td>
<td>0,5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Credit: mineral N-fertiliser</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Innovative product: vegetable meat substitute (30 g of protein)
Functional unit

Nutrient flow from air (Nitrogen Fixation)

Ressources:
- e.g. Water
- e.g. Area

Emissions:
- to Air (e.g. CO₂, CH₄)
- to Water (e.g. NO₃⁻)

Handling of Multi-output processes

System boundary

Cultivation
- white lupine
- quinoa

Processing Crops
- lupine protein isolate
- quinoa flour
- water

Processing to Food Product

Vegetable meat substitute

Functional unit results
- Climate change
- Ozone depletion
- Particulate matter
- Photo-chemical ozone formation
- Acidification
- Eutrophication, aquatic
- Eutrophication, terrestrial

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 635727.

www.protein2food.eu
Functional unit: comparison with chicken breast

<table>
<thead>
<tr>
<th>Possible Functional Units</th>
<th>Innovative meat substitute</th>
<th>Traditional: Chicken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Based on Weight (per 100 g Product)</td>
<td>100 g</td>
<td>100 g</td>
</tr>
</tbody>
</table>

* TPV: textured protein-rich vegetables
** based on the recommendation of the DGE (0,8 g protein per kg body weight) for a 70 kg weighting person
*** approximately the amount of calories to achieve the daily protein requirements
Protein content is the appropriate functional unit when assessing protein supply.
To sum up ...

• Cultivation of legumes reduces use of mineral N-fertilizer

• Environment would benefit much more from high-quality usage of all grain ingredients

• Protein content is the appropriate functional unit for assessment of protein-rich food